

Faculty of Engineering & Technology

Fourth Year Bachelor of Engineering (CE/IT)

(To be Proposed For: Academic Year 2020-21)

Subject Code: CT703A-N	Subject Title: High Performance Computing
Pre-requisite	

	Teaching scheme					Eva	luation Sch	eme				
L	т	P	Total	Total Credit	Theory		Theory		IE Marks	CIA Marks	Pract. Marks	Total Marks
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Widiks	IVIAIRS	WIGHKS			
04	00	02	06	05	03	70	30	20	30	150		

Learning Objective:

- To Study various computing technology architecture.
- To know Emerging trends in computing technology.
- To highlight the advantage of deploying computing technology.
- To explore the next generation of computing paradigm.

Outline of the course:

Sr. No	Title of the Unit	Minimum Hours
1	Cluster Computing and its Architecture	10
2	Cluster Setup and Administration	8
3	Introduction to Grid and its Evolution	8
4	Introduction to Cloud Computing	9
5	Nature of Cloud	7
6	Cloud Elements	6
7	Introduction to Hadoop	8
8	Introduction to FOG Computing and EDGE computing	8

Total hours (Theory): 64 Total hours (Lab): 32 Total hours: 96

Faculty of Engineering & Technology

Fourth Year Bachelor of Engineering (CE/IT)

(To be Proposed For: Academic Year 2020-21)

DETAILED SYLLABUS:

Sr.	Topic	Lecture	Weightage
No		Hours	(%)
1	Cluster Computing and its Architecture:		
	Ease of Computing		
	Scalable Parallel Computer Architecture		
	 Towards Low Cost Parallel Computing & Motivation 		
	Windows opportunity		
	A Cluster Computer and Its Architecture	10	15
	Cluster Classification		
	Commodity Components for Clusters		
	Network Services/Communication SW		
	Cluster Middleware and Single Systems Image		
	Resource management & Scheduling (RMS)		
2	Cluster Setup and Administration:		
	Introduction		
	Setting up the cluster		
	Security	8	13
	System Monitoring		
	System Tuning		
3	Introduction to Grid and its Evolution:		
J	Introduction to Grid and its Evolution:		
	Beginning of the Grid		
	Building blocks of Grid	8	13
	Grid Application and Grid Middleware		
	Evolution of the Grid: First, Second & Third Generation		
4	Introduction to Cloud Computing:		
4	Defining Clouds		
	Consuming Cloud Services Claud Mandala Lang Base Cook		4.4
	Cloud Models – Iaas, Paas, SaaS Incide the Cloud	9	14
	Inside the Cloud		
	Administering Cloud services		
	Technical interface		
	Cloud resources		
5	Nature of Cloud:		
	Tradition Data Center		
	Cost of Cloud Data Center		
	Scaling computer systems	7	10
	Cloud work load		
	Managing data on clouds		
	Public, private and hybrid clouds		

Faculty of Engineering & Technology

Fourth Year Bachelor of Engineering (CE/IT)

(To be Proposed For: Academic Year 2020-21)

6	Cloud Elements:		
	 Infrastructure as a service 	6	9
	Platform as a service	0	9
	Software as a service		
7	Introduction to Hadoop:		
	What is Hadoop?		
	Core Hadoop Components	8	13
	Hadoop Ecosystem	0	15
	Physical Architecture		
	Hadoop limitations.		
8	Introduction to FOG computing and EDGE computing:		
	What is FOG computing?		
	What is EDGE computing?	8	13
	FOG/EDGE node	8	13
	 Middleware for Fog and Edge Computing 		
	Data Management in Fog Computing.		
	Total	64	100

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

Reference Books:

- 1. High Performance Cluster Computing, Volume 1, Architecture and Systems, Rajkumar Buyya, Pearson Education.
- 2. Berman, Fox and Hey, Grid Computing Making the Global Infrastructure a Reality, Wiley India.
- 3. Hurwitz, Bllor, Kaufman, Halper, Cloud Computing for Dummies, Wiley India.
- 4. Robert D. Schneider, Hadoop for Dummies, Wiley India.
- 5. Ronald Krutz, Cloud Security, Wiley India.
- 6. Cloud Computing, A Practical Approach, Anthony Velte, Toby Velte, Robert Elsenpeter, McGrawHill.
- 7. Fog and Edge Computing: Principles and Paradigms by Rajkumar Buyya, Satish Narayana Srirama.

Faculty of Engineering & Technology

Fourth Year Bachelor of Engineering (CE/IT)

(To be Proposed For: Academic Year 2020-21)

List of Experiments:

Sr. No	Name of Experiment
1	To study the basic commands of Linux.
2	To establish Beowulf Cluster using MPI (Message Passing Interface) Library.
3	To Implement efficient parallel debugging for MPI, Threads, and Beyond.
4	To Execute sample program using openMP.
5	Installation and Configuration of Alchemi Grid and Running a sample application on Alchemi Grid Environment.
6	To Run two sample programs using GridSim Toolkit.
7	To Implement Cloud Simulation Toolkit with example.
8	To Setup Hadoop platform.
9	Run sample program using Hadoop Framework.